X-ray Observations of the Intergalactic Medium

Frits Paerels/ Columbia University
Andy Rasmussen/ Columbia University
Caleb Scharf/ Columbia University
Tony Mroczkowski/ Columbia University
Steve Kahn/ KIPAC Stanford
Jan Willem den Herder/ SRON
Jelle Kaastra/ SRON
Cor de Vries/ SRON

1. 'How Dark Is the X-ray Sky?'

- One of the primary goals of Chandra: determine nature of the XRB;
- 80% of the Soft XRB resolved into point sources How much diffuse emission left, and what is it?

Direct Baryon Inventory:

- Big Bang Nucleosynthesis, Abundances of light elements: ρ(baryons)
- $\Omega_{\rm R} = 0.04$ expected;
- $\Omega_{\rm B} = 0.04$ at z = 3 (Ly α forest)
- $\Omega_{\rm B} = 0.02$ at z = 0 in stars and gas! (Fukugita, Hogan, Peebles 1998)

Half the baryons 'missing' at z = 0?

Cen and Ostriker, 1999; and others since

Coupled Dark Matter/Hydrodynamic Simulations:

Half the ordinary matter could be in a tenuous, highly ionized Intergalactic Medium- the 'Warm/Hot IGM' (WHIM)

Material 'left over' from structure formation; lowest density phase, not yet undergone gravitational collapse; heated by shock waves induced by gravitational collapse.

Expected Properties of the WHIM:

- Density contrast: $\delta \sim 10-30$
- Density: $\langle n_{\rm b} \rangle = 2 \times 10^{-7} \, \rm cm^{-3}$
- Broad distribution: $\Delta \log n \sim 1$
- Clumping: $C = \langle n_b^2 \rangle / \langle n_b \rangle^2 \sim 100$
- Temperature $T \sim 4 \times 10^6$ K, but ranges between 10^5 and 10^7 K at each n
- Metallicity: ? Ly α forest, z = 3: $Z/Z_0 \sim 0.01$
- Groups, clusters, $z \sim 0$: $Z/Z_0 \sim 0.1-0.3$
- Probably strongly density-dependent
- Densities very low: equilibration timescales very long!

Detection/characterization:

High ionization: principal radiative interactions in X-ray band; Focus on H-, He-like O, Ne (Z < 8 very highly ionized)

Absorption Studies

- Requires high resolution: diffraction grating spectrometers
- Focus on n = 1-2, O VII, O VIII (577, 653 eV/ 21.6,19.0 A)
- Expected EW: $\Delta v_{\text{thermal}} = (kT/m)^{1/2} = 23 T_6^{-1/2} \text{ km/sec}$:
- Saturation at column density $N = 2.10^{15} \, (\mathring{\Delta}v/23 \text{ km/s}) \, \text{cm}^{-2}$ •Compare: $N \sim 3.10^{14} \, \delta \, (l/10 \text{ Mpc}) \, [(Z/Z_O)/0.1] \, \text{cm}^{-2}$

•Saturation at $\delta \sim 10$!

```
So we're looking at EW ~ 100 km/sec
0.2 eV
7 mA
```

and that requires resolving power $\lambda/\Delta\lambda \sim 3000!$

Absorption Studies (continued)

Detectability will depend strongly on Δv and on Z/Z_0

 Δv : set by expansion of the Universe and gravitational amplification; detection of absorption lines may initially tell us more about velocity fields and abundances than about the baryon density!

Simulations predict:

one system EW > 100 km/sec in random direction, out to $z \sim 0.3$

four systems EW > 30 km/sec in random direction, out to $z \sim 0.3$ (Hellsten et al. 1998)

Absorption Spectroscopy (z > 0): Observational Evidence

PKS2149-306	Chandra HETGS		Fang et al. 2001
S5 0836+710	66	66	66
H1821+643	66	66	Fang et al. 2001a
H1821+643	66	LETGS	Mathur et al. 2003
PKS2155-304	66	LETGS	Fang et al. 2002b
Mkn 421	XMM	RGS	Cagnoni 2002
Mkn 421	Chandra	LETGS	Nicastro et al. 2003

(z > 0 absorption detection claimed)

Absorption Spectroscopy: H1821+643 (z=0.297), Chandra LETGS

Mathur, Weinberg, Chen, *Ap.J.*, **582**, 82 (2003)

- Weak line absorption at four out of six known O VI absorbers
- Two coincidences O VII/VIII (z = 0.12, 0.25)
- All weak features (2σ) ; larger fluctuations present in data

Probably safest regarded as upper limits

Absorption Spectroscopy (continued)

- * PKS2155-304: O VIII Ly α z = 0.055: not present in other data
- * Mkn 421: O VII n=1-2 resonance absorption reported: z = 0.01 RGS/LETGS, z = 0.025: LETGS; EW ~ 3-4 mA
- * Possible detection in Mkn 421.
- * We should be close at current sensitivity: predict 5-10 systems $N(O VII) > 10^{15} cm^{-2}$ per unit redshift; surveyed about 0.3
- * Will be difficult to increase statistics: lack of bright sources, exposure times already of order 1 Msec.
- * Promising avenue: monitor nearby BL Lac's and take advantage of occasional outbursts (Mkn 421, Nicastro et al. 2003)
- * Won't see a 'Forest' until Constellation-X/XEUS

Absorption Spectroscopy (continued): z = 0

XMM/RGS; several 100 ksec exposure per source

Absorption Spectroscopy (continued): z = 0

* Absorption also present in Chandra spectroscopy: first announced (PKS2155-304) by Nicastro et al. (2002), and several other sources.

* Interpretation:

assume collisional equilibrium; ionization balance implies $T_e \sim 3.10^6$ K: expected virial temperature of the Local Group;

Column densities + limits on emission line intensities (XQC experiment, McCammon et al. 2003); assume 0.1 Solar O abundance

$$n_e < 2.10^4 \text{ cm}^{-3}$$
; $l > 200 \text{ kpc}$: Local Group ICM!

NB: difficulties with photoionization equilibrium interpretation (density very low, size ~ 10 Mpc, but lines unresolved in RGS)

Emission Studies: Broad Band

So far: all ROSAT (short focal length, large FOV!)

- •Qingde Wang: isotropic excess intensity near ¾ keV
- •Scharf et al. 2000: blank field
- •Kull & Bohringer 1999; Tittley & Henriksen 2001: cluster environments
- -Zappacosta et al. 2002, Warwick et al. 1998: Lockman Hole
- •Kaastra et al. 2003: redshifted O VII near clusters

Scharf Filament: $I \sim 6.10^{-13}$ erg cm⁻² s⁻¹ deg⁻² (0.5-2 keV; S/N ~3) $\delta \sim 50$?

Zappacosta et al.: $I \sim 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ deg}^{-2}$; $\delta \sim 100$?

Both correlate with Galaxy overdensity; Scharf Filament may be the WHIM, away from virialized regions; $z \sim 0.3$ -0.5

Emission Studies: Broad Band

Scharf Filament: ROSAT 0.5-2 keV

Emission Studies: Broad Band

T ~ 10⁶ K:
$$I \sim n_e^2 l \Lambda(T)/4\pi$$
 in bremsstrahlung
~ 3.10⁻¹³ (δ/30)² (1/10 Mpc) (Λ/10⁻²³) erg cm⁻² s⁻² deg⁻²

Agrees with results from DM/Hydro Large Scale simulations Emission heavily weighted towards high overdensities ($I \sim \delta^2$):

Need to get to $\delta \sim 10-30$ in order to catch at least half the mass density in the WHIM!

Spectroscopic Imaging of the Intergalactic Medium

Enhance contrast by imaging in narrow emission lines; gain by factor equal to spectroscopic resolving power

focus on Oxygen (abundant; 'clean' band):

 $T \sim 2.10^6 \text{ K}$:

$$< I > \sim (1/4\pi) C < n_e >^2 l A \Lambda_i(T_e)$$

~ 0.1 photon cm ⁻² s ⁻¹ sr ⁻¹ **EXTREMELY FAINT!**

$$(l \sim (1/3)(c/H_0), A \sim 0.1 \text{ Solar})$$

(NB: medium probably in photoionization equilibrium with XRB, but shock-heated to 0.1 keV; collisional excitation dominates; photoexcitation important in O resonance lines!)

Spectroscopic Imaging of the Intergalactic Medium

Can get 3D distribution; abundances, sizes, densities

Diffuse emision: relevant instrument parameter is 'Grasp': product of solid angle and effective area: 'A. Ω '

For reasonable count rates (background!), need A. $\Omega \sim 0.1$ cm².sr; XMM/EPIC: $A \sim 500$ cm² at 500 eV, $\Omega \sim 10^{-4}$ sr, but: resolving power only 1/5! not enough contrast, in spite of reasonable count rates. Chandra ACIS is somewhat worse.

Experiment requires high resolution (\sim 1 eV, large A. Ω , large FOV (several square degrees), \sim sub-arcminute angular resolution soft X-ray imaging spectroscopic survey:

requires dedicated instrument.

Summary

- * z > 0 absorption by intergalactic medium: possible detection of O VII resonance line, z = 0.01, in Mkn 421
- * Absorption z = 0 seen in all directions (multiple objects, all instruments): most probably the Local Group ICM
- * Emission from filaments $\delta \sim 50\text{-}100$ seen in broad-band images; in two cases: probably densest phase of the (true) WHIM.
- * Absorption studies Chandra, XMM: will demonstrate the principle, but will not see 'Forest' (not enough bright targets)
- * Emission with Chandra/XMM: will probably find a few examples, but sensitivity to $\delta \sim 10$'s too low. No redshift, T, n, l, A.
- * Case for dedicated high resolution, large $A.\Omega$ spectroscopic imaging experiment